
Detecting variability in astronomical time series data
: applications of clustering methods in cloud computing environments

Min − Su Shin1, Yong − Ik Byun2, Seo − Won Chang2, Dae − Won Kim2,3, Myung − Jin Kim2,4

Dong − Wook Lee2, Jaegyoon Ham5, Yong − Hwan Jung5, Junweon Yoon5, Jae − Hyuck Kwak5, Joo Hyun Kim5

1 University of Michigan, 2 Yonsei University, 3 CfA, 4 KASI, 5 KISTI

We present applications of clustering methods to de-
tect variability in massive astronomical time series
data. Focusing on variability of bright stars, we
use clustering methods to separate possible variable
sources from other time series data, which include in-
trinsically non-variable sources and data with common
systematic patterns. We already finished the anal-
ysis of the Northern Sky Variability Survey (NSVS)
data, which include about 16 million light curves, and
present candidate variable sources with their associa-
tion to other data at different wavelengths. We also ap-
ply our clustering method to the light curves of bright
objects in the SuperWASP Data Release 1 (DR1).
This study is conducted in cloud computing environ-
ment provided by the KISTI Supercomputing Center.
We explain our experience of using the cloud comput-
ing test bed.

1. Introduction

Detecting variability in astronomical time series data
can be understood as a problem of outlier or anomaly
detection in statistics and machine learning. The main
assumption is that the time series data of detectable vari-
able objects is considerably different from the rest of data.
In usual data sets of astronomical time series data, there
are considerably more normal objects, i.e. non-variable
objects, than abnormal objects, i.e. variable objects. When
we can describe the data properties of non-variable objects
well in given data sets, we can detect variable objects easily
and completely.
The common types of anomaly detection methods are
graphical and statistical-based, proximity/distance-based,
density-based, and clustering-based. Traditionally, as-
tronomers have used statistical-based anomaly detection
methods, while generally ignoring any systematic patterns
of time-series data or erasing the systematic patterns with
empirical approaches. Here, we apply clustering methods,
which can consider objects affected by common systematic
patterns as ordinary types, and can separate peculiar objects
as variable candidates.

2. Methods : clustering with variability indices

Multiple variability indices
In order to detect various patterns of light variation, we
adopt the following variability indices which are derived
with light curvesxn.

Infinite Gaussian Mixture Model
Gaussian Mixture Model (GMM) is commonly used as a
density estimator and a clustering method by describing the
distribution of data as mixtures of multivariate Gaussian
distributions. Because we do not know how many clus-
ters exist in our data, we use an Infinite Gaussian Mixture
Model with Dirichlet Process which allows the model to
have infinitely many mixture components:

pm(x) = 1
(2π)γ/2|Σm|1/2

exp(−1
2(x − µm)TΣ−1

m (x − µm)),

wherem is an index overM , x is a 8-dim vector of parame-
ters, andγ is the number of parameters (in our caseγ = 8).
The final distribution of all objects is given by:

p(x) =
∑M

m=1 pm(x)wm,

wherewm is the fraction of each mixture component.

3. Variable candidates in the NSVS

Clustering results
We cluster 16,189,040 light curves, having data points at
more than 15 epochs, as variable and non-variable candi-
dates in 638 NSVS fields.

Figure - GMM results with respect to the number of observation epochs(left) and

center coordinates of the largest cluster(right). The distribution shows that there are

field-by-field variations of systematic effects which produce variations of the largest

clusters central position in the eight-dimensional space.

Variable candidates

Figure - Example light curves of variable candidates matched to SIMBAD objects of

non-variable stars.

Figure - Example light curves of variable candidates that are IRAS sources(left),

and with the reliable 2MASS photometry(right). The IRAS designations and colors

(C12/25, C25/60) are presented in the top of each panel. The 2MASS designations and

(J − H, H − Ks) are given in the top of each panel. 2MASS 18552297+0404353 is

also PDS 551 which is a Herbig Ae/Be candidate star.

Figure - SDSS color-color diagrams of the variable candidates (left), and example

light curves selected as RR Lyrae variable candidates with the SDSS spectroscopic

data(right). Boxes represent the ranges of single-epoch colors for RR Lyrae variable

candidates. Solid lines in the panel of (g − r) and (r − i) colors represent (g − i)

colors corresponding to spectral types O5, A0, F0, G0, K0, M0, and M5 from left to

right. The light curves of RR Lyrae variables are folded withapproximate periods of

0.541757 (top) and 0.489448 (bottom) days, respectively.

Figure - Color-color diagrams of variable candidates with the SDSS and GALEX pho-

tometric data(left), and example light curves of variable candidates with the reliable

GALEX and SDSS photometry(right). Contours correspond to the color distributions

of quasars which are detected in both SDSS and GALEX.

4. Processing SuperWASP DR1

We also explore the public data release 1 from the
SuperWASP project. This data set has about 15 million
light curves over both northern and southern skies. Because
the SuperWASP DR1 does not have well-defined obser-
vation fields, first, we group light curves having similar
time-scales such as starting and ending times.

Cloud computing environments
For processing the SuperWASP DR1 data, we try to use a
Cloud computing testbed which is deployed by the Korea
Institute of Science and Technology Information (KISTI)
Supercomputing Center. We test two different system con-
figurations. One system uses Condor as a job manage-
ment software, and stores data in Lustre distributed file sys-
tem. Another system adopts Hadoop computing environ-
ment with its distributed file system. Both systems are built
with virtual machines which are managed by Eucalyptus.
Although Hadoop systems does not allow us to use differ-
ent file systems and is less flexible than the Condor system,
its job management considers data locality which can im-
prove performance of parallel distributed processing.

Figure - Cloud computing environments developed by the KISTI for data-intensive

computing. In this initial configuration, Condor and Hadoopsystems will be equipped

with maximum 300 virtual machines, which can be elasticallyconfigured and de-

ployed by users. The current test bed is made of 13 and 20 computing virtual ma-

chines for the Condor and Hadoop systems, respectively.

The Hadoop system shows a slightly better performance
than the Condor system when the input light curve is large
due to its usage of data locality. Because the Hadoop sys-
tem requires a Java program to exploit its general support
of the Map-Reduce approach, we use Hadoop streaming to
run programs written in C or C++. Therefore, it is more
attractive to use the Condor system for the whole procedure
of processing the SuperWASP DR1.

Figure - Performance tests of deriving variability indicesfrom light curves combined

to the specific sizes with the Condor(left) and Hadoop(right) systems. From top to

bottom, the plots show user CPU time, system CPU time, and wall-clock time. Red,

black, and blue lines correspond to maximum, average, and minimum measurements.

5. Conclusion

We are processing all SuperWASP DR1 light curves
to find new variable candidates by using the KISTI Cloud
computing environment. The most parts of the processing
will be done with the Condor system. The analysis results
of the NSVS and SuperWASP DR1 will be released to
public on our web site (http://stardb.yonsei.ac.kr) soon.


